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Abstract

We analyze the autocorrelation function of a time series of energy
values sampled in the energy landscapes of four different combinato-
rial optimization problems. The sampling is performed by Metropolis
random walks. The temperature of the walk and the size of the inves-
tigated problems are systematically varied.

We find that, in a suitably defined high temperature region, i.e.,
above the freezing transition, the autocorrelation decays in an expo-
nential fashion. We extract the temperature and system size depen-
dence of the corresponding correlation time, which turns out to be of
the Arrhenius form. Energetic and entropic contributions to the cor-
relation time (barriers) are identified and shown to be asymptotically
independent of system size.
pacs: 05.40.+j ; 02.50.Ga ; 02.70.Lq

1 Introduction

A number of important biological, physical and combinatorial optimization
applications e.g. evolution, thermalization of glassy systems and simulated
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annealing are described in terms of energy landscapes[1]. Technically, we de-
fine a landscape to be a (large but finite) graph, where each node x represents
a configuration of the system, and where edges connect nearest neighbors.
The distance d between two nodes is the number of edges in the shortest
path from one node to the other. In addition, a real valued function E, the
energy, is defined on the nodes; the values of E can be visualized as giving
the ‘height’ of the landscape.

Whether one’s interest in landscapes is rooted in physical or biologi-
cal applications or in optimization per se, a good characterization of the
landscape geometry is of paramount importance for understanding the dy-
namics. One successful effort in this direction is a series of studies by Stadler
and coworkers[2, 3, 4] which classifies landscapes based on the properties of
energy-energy correlation functions[5]. One of their tools is to sample en-
ergy values by an unbiased random walk. In the framework of a Metropolis
scheme this corresponds to walking at infinite temperature. These authors
analyzed several examples and showed that, in each case, the energy-energy
correlation function sampled by a random walk is exponential. The depen-
dence of the corresponding correlation times on the system size was also
studied and related to the correlation length of the landscape, a quantity
which gauges the statistical similarity of energies of configurations a distance
d apart.

One motivation for such studies comes from the expectation that clas-
sifying systems using their correlation times can select between alternative
implementations of optimization algorithms. In particular, Stadler et al.
suggested using the correlation time to choose between alternative move
classes. The preferred move class is the one with the largest correlation
length. The argument is based on Schuster’s conjecture [?] that each corre-
lated volume of the landscape contains one ‘good’ minimum. It then follows
that larger correlation times will lead to fewer local minima.

It is well known that relaxation properties of hard combinatorial prob-
lems, as well as other complex systems, are simply described at high temper-
atures, but very intricate below the freezing temperature, where the system
becomes non-ergodic and multiple relaxational time scales become impor-
tant. To investigate these relaxation properties, we extend the approach of
Stadler and coworkers by sampling the energy landscape with a Metropolis
algorithm at large but finite T and by studying the correlation function of
the ensuing time series of energy values. We consider four different systems,
and find in each case that the correlation function is well described by a
single exponential and the temperature dependence of the correlation time
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has an Arrhenius form, with energetic and entropic barriers asymptotically
independent of system size.

2 Background

We recall that the Metropolis rule accepts a randomly chosen neighbor x′ of
the current state x with probability Px′←x = min(1, exp((E(x)−E(x′))/T ).
The correlation function of the walk of length M is

R(t) =
< E(xi)E(xi+t) > − < E(xi) >< E(xi+t) >√

(< E(xi)2 > − < E(xi) >2)(< E(xi+t)2 > − < E(xi+t >2)
, (1)

where E(xi) is the energy value sampled at the i-th step of the walk and
〈〉 = 1

M−t

∑M−t
i=1 (). The quantity R(t) has considerable physical interest as,

for example, it determines the (linear) response of the system to an arbitrary
thermal disturbance [?].

The master equation[7] describing the dynamics for the Metropolis pro-
cess 1 has the form

dP

dt
= WP (2)

Here, P is a vector of probabilities, where Px is the probability of the system
being in state x. The stochastic W matrix is obtained from the connectivity
matrix of the graph C by Wx,x′ = Cx,x′ min(1, exp(−(E(x) − E(x′))/T ),
for x 6= x′. The diagonal elements are found by imposing the stochasticity
condition that all column sums be zero. By construction W is negative
semidefinite. It has a zero eigenvalue, corresponding to the equilibrium
solution. The relaxation properties at sufficiently large times are given by
the next largest eigenvalue, λ1. The reciprocal of its absolute value is often
denoted by the term ‘relaxation time’, τ =| λ1 |−1. Generically (i.e. unless
special symmetries of the problem make themselves felt or if the ergodicity of
the system is broken) one would expect the relaxation eigenvalue to describe
the decay of every function on the set of states to their equilibrium value.
In particular, the decay of the energy-energy autocorrelation function at
sufficiently long times should occur with τ . Since R(0) = 1 and R(t) ≈ 0

1While the algorithm itself actually takes place in discrete time, in this paragraph we
refer to the description in continuous time since this description is more commmon in
the physics literature. The two descriptions correspond closely, with the discrete time
transition matrix being given by exp(W ) [7].
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for t large, it follows that when the autocorrelation time is of the simple
exponential form, it must be given by

R(t) = exp(−t/τ). (3)

Thus, the correlation time and the relaxation time are likely to be one and
the same quantity.

Little is known about the behavior of τ even at infinite temperature
where the W matrix is doubly stochastic and equal to minus the laplacian
of the graph. In general, it can be shown that λ1 must vanish as the system
size grows to infinity. There are also some known bounds for λ1 and related
quantities for walks on arbitrary graphs in the limit of large system size.[8]
The time dependence of the relaxation time for random walks on a line
(which makes W tridiagonal ) have been considered by Larsen[9]. No general
results for the relaxation time at finite temperatures and for arbitrary graphs
appear to be available.

3 Numerical experiments

3.1 Systems considered

We have considered instances of the symmetric and euclidean traveling sales-
man problem, of the graph bipartitioning problem and of the spin glass
problem with long range interactions. We find that the correlation function
at high temperatures has in all cases the exponential form in Eq. 3. The
single exponential decay is observed through several decades, i.e. until the
value of the correlation function R has practically decayed to zero.

While the numerical value of τ is unaffected by the choice of units for the
energy, a meaningful comparison of the temperature and size dependence of
τ(T,N) for systems of different sizes requires the use of uniform energy and
temperature scales. This has been achieved by ensuring that in each case
the energy is an extensive quantity (i.e. proportional to N).

The symmetric traveling salesman problem, henceforth STSP, is defined
by a set of N cities and by an N×N ‘distance’ matrix with positive elements
dij . The dij ’s are drawn from a uniform distribution on the interval (0, 1].
A configuration or tour x is a permutation Px of the N cities. The energy
of the tour is

E(x) =
N∑

i=1

dPx(i),Px(i+1), (4)
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which, being a sum of N positive terms, scales linearly with N . In other
words, the energy is an extensive property, as required. The move class,
which defines the neighborhood of each configuration is the so called ‘two-
bond’ move [10]: two positions i and j are picked uniformly at random along
the current tour. The corresponding cities are exchanged and the direction
of the tour between them is reversed.

In the euclidean traveling salesman problem, henceforth denoted ETSP,
both the energy function and the move class are the same as in the STSP
problem. The distances between pairs of cities are however ‘true’ distances,
i.e. they are calculated from the positions of the cities according to the usual
euclidean metric. The positions are in turn drawn from a uniform distribu-
tion in the unit square. In this system most distances are of order one, and
most configurations have therefore energies of order N , leading again to an
extensive energy function. Note however that the lowest energy of the ETSP
scales as N1/2[11]. This is due to the fact that low-energy configurations
mainly involve neighbor cities. As the density of cities increases linearly
with N , the distance between close neighbors must scale as N−1/2, whence
the scaling follows. The lack of extensivity of the ground state does not
concern us here, as we do not probe very low energy configurations during
our sampling.

Thirdly, we consider a mean-field spin glass problem, henceforth called
SPG: a set of N Boolean variables σi = ±1 defines the configuration space.
A set of coupling constants Jij , with Jij = Jji, is created by independently
drawing each Jij , i < j, from a symmetric distribution, which in our case is
the two-valued distribution Jij = ±1. For any configuration x, the energy
is given by[12]

E(x) =
∑
i<j

Jijσ
x
i σx

j . (5)

The move class takes one spin at random and multiplies it by −1. Note
that the energy is a sum of N terms, where each term is again a sum of
N stochastic variables with zero mean. It follows that, for large N , the
distribution of E becomes normal with σ ∝ N3/2. To restore extensivity, we
must divide the Jij by N1/2.

Finally, we look at an instance of the graph bipartitioning problem,
henceforth called GBP. One considers a set of 2N nodes and creates, with
probability p, an edge Jij = 1 between nodes i and j. The case of no
edge corresponds to Jij = 0. The probability of a non zero connection
was in our case p = 0.1. We again assign to each node i a spin variable
σi = ±1. If σi = 1 the i’th node is declared to be ‘white’ otherwise ‘black’.
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A configuration of the problem is then a binary string of length 2N where
half of the nodes are white and half black. Its energy is the number of
edges joining nodes of different types. The energy of a configuration x can
compactly be written as

E(x) =
∑
i<j,j

Jij

(1− σx
i σx

j )
2

(6)

which is quite similar to Eq. 5. Note however that the average graph has
pN2 edges, a finite fraction of which contributes to the energy. Hence, the
energy scales with N2, and all the Jij (or alternatively, the temperature)
must be divided by N to restore extensivity. The move class is also different
from the spin-glass case. Here a move is performed by taking a pair of nodes
and switching their colors. In spin language this corresponds to a dynamics
which conserves the total magnetization.

3.2 Results

All simulations were performed on a SUN Sparc 1000E workstation at San
Diego State University. For each problem we considered the system sizes
N = 20, 40, 60, 80 and 100. The Metropolis algorithm was used to generate
time series of energy values, each comprising one million updates. Different
sets of data were produced, corresponding to different temperatures. Besides
the case T = ∞, which served as a check, we used a set of temperatures
equally spaced on a logarithmic scale, starting at T = 128, and ending at a
temperature where the correlation function clearly deviated from the expo-
nential behavior. The correlation time was calculated as the reciprocal of
the slope of the logarithm of the empirical correlation, plotted as a function
of time. Only data with R > 0.1 were used in the fits and the goodness of
fit measure2 r2 well above 0.99. Each temperature and system size were run
100 times and the tau values used were an average of the 100 runs.

In all four problems, the dependence of the correlation length on the
system size and the temperature is well described by an Arrhenius type
formula:

τfit = N(c1 + c2/N) exp(
c3 + c4/N

T
) (7)

The values of the coefficients are summarized in the Table 1.
2coefficient of determination
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- c1 c2 c3 c4

STSP 0.52 ± 0.02 [1/2] -1.0 ± 0.2 0.39 ± 0.03 (1.1 ± 0.5)
ETSP 0.50 ± 0.01 [1/2] -1.23 ± 0.04 0.46 ± 0.02 (0.5 ± 0.3)
SPG 0.24 ± 0.01 [1/4] (-0.33 ± 0.62) 2.0 ± 0.1 (-2 ± 5)
GBP 0.125 ± 0.001 [1/8] -0.44 ± 0.06 [−3/8] 0.027 ± 0.004 1.45 ± 0.15

Table 1: Parameters for the fitted dependency of the correlation time on
temperature and system size, according to Eq. 7. Available theoretical val-
ues describing the T = ∞ behavior are dispayed in brackets. They agree
very well with the values obtained by our empirical fit. Values not signif-
icantly different from zero are indicated in parentheses. Omitting them in
the fits changes the parameters only slightly, still leaving all values within
the reported error bars. All fits used had r2 values well in excess of 0.99.

The coefficients, ci, were determined in a two pass operation. During
the first pass, least squares lines were fit to 1/T versus ln(τ) to find

ln(τ) = α
1
T

+ β. (8)

These coefficients α and exp(β) were then fit in the second pass to linear
functions of N and 1/N respectively. Again, as for the extraction of τ values
from the time series, all fits had r2 values well in excess of 0.99.

During the first pass, the line of 1/T versus ln(τ), we used only high
temperature points. The exact choice of what constituted low temperature
had a significant effect on the resulting regression coefficients. Since we had
100 τ values for each T and N , we had available the standard deviation in
the observed τ values. This standard deviation divided by τ was constant
down to a certain temperature below which its value rose dramatically. This
temperature was used to define the divide between high T and low T data
and small variations around this temperature were explored. The reported
error in the values of the ci was determined as the maximum of the standard
estimate of error in the final regression coefficients and the observed standard
deviation obtained by varying the exact cutoff for what constituted low
temperature points.

As discussed further below, the lack of a fit of our functional form in Eq.
(7) for low temperature data is expected, and can be physically explained as
freezing. At low temperatures more than one relaxational time scales become
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important, whereby the correlation function no longer can be described by a
single exponential. Concurrently, the apparent correlation length no longer
describes the decay of the slowest relaxation mode. Its value stays well
below what formula (7) would predict at the relevant temperature, and, in
addition, it becomes almost insensitive to the system size. This is consistent
with a broken ergodicity picture, where the system only relaxes in subsets
of its state-space during the available observation time.

Usually, broken ergodicity is described in terms of energetic or entropic
barriers which diverge as the size of the system grows large. In our present
context, due to the Arrhenius form of the correlation time, the quantity
c3+c4/N plays the role an energy barrier separating regions of configuration
spaces which must be sampled before the energy can decay to its average
value. We find this energy barrier to be asymptotically independent of
system size. An entropic barrier can be defined as the logarithm of the
relaxation time scale at T = ∞. This quantity is found to have a linear
dependence on N . This linear dependence is usually trivially removed by
using N Metropolis updates (a Monte Carlo step) as the unit of time. Our
data lead to the conclusion that provided one properly scales the energy
(so as to be extensive) and the time (measured in N Metropolis steps),
the energetic and entropic barriers probed by high temperature relaxation
processes are basically independent of system size.

4 Summary and conclusions

The energy-energy correlation function for four different combinatorial prob-
lems was studied by Monte Carlo sampling at different temperatures. For
sufficiently high temperatures, the correlation function decays exponentially
and correlation times depend on the temperature in a simple Arrhenius fash-
ion. The entropic and energetic barriers are found to be independent of the
system size.

We conclude with some speculations regarding the reasons for our find-
ings. One possibility is that there exist barriers which diverge with system
size, but separate regions of the landscape with identical statistical proper-
ties. A second possibility — and one which we believe to be the case — is
that the landscape is fraught with basins of local minima which get deeper
as the system grows larger. In this case, the basins themselves must be
invisible to Monte Carlo sampling at high T . The reason for this invisibil-
ity [13] is due to the fact that the local density of states within each basin
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grow exponentially as exp(E/Tc). In this case no local Boltzmann equili-
bration can exist within the basins for T > Tc and the basins cannot be
detected at high temperature. Basically this amounts to an entropic effect:
the overwhelming weight of configurations located at the rim of the basins
prevents the Metropolis algorithm from visiting any low-energy states deep
inside. An approximately exponential behavior of the local density of states
has been found by exhaustive enumeration of states within single basins
for a number of different complex landscapes[13, 14, 15, 16]. In systems
with quenched randomness, such as those considered here, it seems unlikely
that the landscapes should possess the degree of symmetry required for the
first possibility to apply. Thus, we see our results as indications that the
landscape is rather ‘flat’ at high temperatures, with the complex behav-
ior appearing in a sudden fashion when exponential basins open up at low
temperatures.
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